\[ \]
\[ \]
\[ \]
A simple rule to describe monetary policy of inflation-targetting countries \[\begin{align} i_t = r_t + \pi_t + a_\pi(\pi_t-\pi^*) + a_y(y_t-y^*), \quad a_\pi, a_y > 0 \end{align}\]
go-to models for the analysis of policy effects
facilitate the analysis of dynamic causal effects of a well-isolated cause
relatively simple to work with data and provide empirical evidence on the propagation of shocks through economies and markets
provide data-driven stylised facts to be incorporated in theoretical models
extensively used for: monetary and fiscal policy, financial markets, …
extendible: featuring many variations in specification
Proposed by Sims (1980)
\[\begin{align} \text{dynamic equation: }&& y_t &= \mathbf{A}_1 y_{t-1} + \dots + \mathbf{A}_p y_{t-4} + \mathbf{A}_d x_{t} + \epsilon_t\\[1ex] \text{structural equation: }&& \mathbf{B}\epsilon_t &= u_t\\[1ex] \text{structural shocks: }&& u_t |Y_{t-1} &\sim N_N\left(\mathbf{0}_N,\text{diag}\left(\boldsymbol\sigma^2\right)\right) \end{align}\]
\[\begin{align} \text{dynamic equation: }&& y_t &= \mathbf{A}_1 y_{t-1} + \dots + \mathbf{A}_4 y_{t-4} + \mathbf{A}_d x_{t} + \epsilon_t\\[1ex] \text{domestic sector: }&& y_t &= \begin{bmatrix}\text{CASH}_t &\text{gdp}_t &\text{cpi}_t &\text{TWI}_t \end{bmatrix}'\\[1ex] \text{foreign sector: }&& x_t &= \begin{bmatrix}\text{TOT}_{t-i} &\text{gdp}_{US.t-i} &\text{FFR}_{t-i} \end{bmatrix}' \end{align}\]
\[ \begin{align*} \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ B_{21} & B_{22} & B_{23} & B_{24} \\ B_{31} & B_{32} & B_{33} & B_{34} \\ B_{41} & B_{42} & B_{43} & B_{44} \\ \end{bmatrix} \begin{bmatrix} \text{CASH}_t \\ \text{GDP}_t \\ \text{CPI}_t \\ \text{TWI}_t \\ \end{bmatrix} = \dots+ \begin{bmatrix} u_{t}^{MP} \\ u_{2,t} \\ u_{3,t} \\ u_{4,t} \\ \end{bmatrix} \end{align*} \]
\[\begin{align} \text{jointly normal: }&& u_t |Y_{t-1} &\sim N_4\left(\mathbf{0}_4,\text{diag}\left(\boldsymbol\sigma^2\right)\right)\\[1ex] \text{structural shocks: }&& u_t&=\begin{bmatrix}u_{t}^{MP} & u_{2,t} & u_{3,t} & u_{4,t}\end{bmatrix}' \end{align}\]
# restrictions on impulse response functions
sign_irf <- matrix(NA, 4, 4)
sign_irf[1, 1] <- sign_irf[4, 1] <- 1 # impact on cash rate and exchange rate
sign_irf[3, 1] <- -1 # impact on consumer price index
sign_irf <- array(sign_irf, c(4, 4, 4)) # last for 4 periods
sign_irf[, , 1]
[,1] [,2] [,3] [,4]
[1,] 1 NA NA NA
[2,] NA NA NA NA
[3,] -1 NA NA NA
[4,] 1 NA NA NA
[,1] [,2] [,3] [,4]
[1,] 1 -1 -1 1
[2,] NA NA NA NA
[3,] NA NA NA NA
[4,] NA NA NA NA
**************************************************|
bsvarSIGNs: Bayesian Structural VAR with sign, |
zero and narrative restrictions |
**************************************************|
Progress of simulation for 5000 independent draws
Press Esc to interrupt the computations
**************************************************|