Skip to contents

Provides posterior summary of the forecasts including their mean, standard deviations, as well as 5 and 95 percentiles.

Usage

# S3 method for class 'ForecastsPANEL'
summary(object, which_c, ...)

Arguments

object

an object of class ForecastsPANEL obtained using the forecast() function containing draws the predictive density.

which_c

a positive integer or a character string specifying the country for which the forecast should be plotted.

...

additional arguments affecting the summary produced.

Value

A list reporting the posterior mean, standard deviations, as well as 5 and 95 percentiles of the forecasts for each of the variables and forecast horizons.

Author

Tomasz Woźniak wozniak.tom@pm.me

Examples

# specify the model
specification = specify_bvarPANEL$new(
      ilo_dynamic_panel, 
      exogenous = ilo_exogenous_variables)
burn_in       = estimate(specification, 10)             # run the burn-in
#> **************************************************|
#> bpvars: Forecasting with Bayesian Panel VARs      |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
posterior     = estimate(burn_in, 10)                   # estimate the model
#> **************************************************|
#> bpvars: Forecasting with Bayesian Panel VARs      |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|

# forecast 6 years ahead
predictive    = forecast(
      posterior, 
      5, 
      exogenous_forecast = ilo_exogenous_forecasts)
#> **************************************************|
#>  bpvars: Forecasting with Bayesian Panel VARs     |
#> **************************************************|
#>  Progress of sampling 10 draws from
#>     the predictive density for 189 countries
#>     Press Esc to interrupt the computations
#> **************************************************|
summary(predictive, which_c = "POL")
#>  **************************************************|
#>  bsvars: Bayesian Structural Vector Autoregressions|
#>  **************************************************|
#>    Posterior summary of forecasts                  |
#>  **************************************************|
#> $variable1
#>       mean         sd 5% quantile 95% quantile
#> 1 27.23526 0.01765706    27.21149     27.26160
#> 2 27.25520 0.03355331    27.21019     27.29431
#> 3 27.28259 0.03841605    27.23807     27.33743
#> 4 27.30341 0.04774847    27.24788     27.36275
#> 5 27.32025 0.05311183    27.25015     27.38142
#> 
#> $variable2
#>       mean       sd 5% quantile 95% quantile
#> 1 2.935940 1.935211   0.3069085     5.592461
#> 2 3.508744 3.669288  -1.1016958     8.114505
#> 3 3.562780 3.472347  -1.8308395     7.426665
#> 4 4.044392 3.357040  -0.9912429     8.414191
#> 5 4.158390 3.546699  -0.7080652     9.120057
#> 
#> $variable3
#>       mean       sd 5% quantile 95% quantile
#> 1 56.89141 0.910773    55.59045     57.91899
#> 2 56.61765 1.713509    54.43775     58.68358
#> 3 56.47884 1.752389    54.31187     58.91346
#> 4 56.23710 1.925526    53.65835     58.79852
#> 5 56.21405 2.141917    53.17912     58.99277
#> 
#> $variable4
#>       mean        sd 5% quantile 95% quantile
#> 1 58.61335 0.3863732    58.03485     59.05772
#> 2 58.68542 0.6505752    57.81035     59.64509
#> 3 58.57302 0.7368109    57.76759     59.62746
#> 4 58.60957 0.8799574    57.46751     59.62418
#> 5 58.65753 0.8040811    57.37326     59.65575
#> 

# workflow with the pipe |>
############################################################
ilo_dynamic_panel |>
  specify_bvarPANEL$new() |>
  estimate(S = 10) |> 
  estimate(S = 20) |> 
  forecast(horizon = 5, exogenous_forecast = ilo_exogenous_forecasts) |> 
  summary(which_c = "POL")
#> **************************************************|
#> bpvars: Forecasting with Bayesian Panel VARs      |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bpvars: Forecasting with Bayesian Panel VARs      |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#>  bpvars: Forecasting with Bayesian Panel VARs     |
#> **************************************************|
#>  Progress of sampling 20 draws from
#>     the predictive density for 189 countries
#>     Press Esc to interrupt the computations
#> **************************************************|
#>  **************************************************|
#>  bsvars: Bayesian Structural Vector Autoregressions|
#>  **************************************************|
#>    Posterior summary of forecasts                  |
#>  **************************************************|
#> $variable1
#>       mean         sd 5% quantile 95% quantile
#> 1 27.24376 0.02425341    27.21596     27.28908
#> 2 27.27268 0.03884231    27.21937     27.34028
#> 3 27.30357 0.05159511    27.22597     27.38782
#> 4 27.33591 0.06178842    27.25865     27.43235
#> 5 27.36122 0.06291402    27.28317     27.46765
#> 
#> $variable2
#>       mean       sd 5% quantile 95% quantile
#> 1 2.981215 1.660503   1.2447601     5.669062
#> 2 2.983305 2.689008   0.1378545     7.432309
#> 3 3.139564 2.343151   0.7367719     7.034533
#> 4 2.896960 3.145941  -0.8026929     8.428901
#> 5 3.260810 3.876841  -0.9991839     8.698804
#> 
#> $variable3
#>       mean        sd 5% quantile 95% quantile
#> 1 57.02694 0.8853717    55.77246     58.22089
#> 2 57.09913 1.4835397    54.91607     58.64706
#> 3 57.15472 1.2548057    55.29637     58.60185
#> 4 57.34543 1.6130461    55.09063     59.53814
#> 5 57.24610 1.9411444    54.07534     59.90406
#> 
#> $variable4
#>       mean        sd 5% quantile 95% quantile
#> 1 58.79368 0.4577458    58.30155     59.55146
#> 2 58.88317 0.7088804    57.74656     59.89343
#> 3 59.04071 0.8203358    57.65844     60.13711
#> 4 59.09418 0.9930882    56.95650     60.34998
#> 5 59.21184 1.0078881    57.46338     60.19090
#>