
Provides posterior summary of country-specific Forecasts
Source:R/summary.R
summary.ForecastsPANEL.RdProvides posterior summary of the forecasts including their mean, standard deviations, as well as 5 and 95 percentiles.
Usage
# S3 method for class 'ForecastsPANEL'
summary(object, which_c, ...)Arguments
- object
an object of class
ForecastsPANELobtained using theforecast()function containing draws the predictive density.- which_c
a positive integer or a character string specifying the country for which the forecast should be plotted.
- ...
additional arguments affecting the summary produced.
Value
A list reporting the posterior mean, standard deviations, as well as 5 and 95 percentiles of the forecasts for each of the variables and forecast horizons.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# specify the model
specification = specify_bvarPANEL$new(
ilo_dynamic_panel[1:5],
exogenous = ilo_exogenous_variables[1:5])
burn_in = estimate(specification, 5) # run the burn-in
#> **************************************************|
#> bpvars: Forecasting with Bayesian Panel VARs |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
posterior = estimate(burn_in, 5) # estimate the model
#> **************************************************|
#> bpvars: Forecasting with Bayesian Panel VARs |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# forecast 6 years ahead
predictive = forecast(
posterior,
5,
exogenous_forecast = ilo_exogenous_forecasts[1:5])
summary(predictive, which_c = "ARG")
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Posterior summary of forecasts |
#> **************************************************|
#> $variable1
#> mean sd 5% quantile 95% quantile
#> 1 27.00275 0.07159561 26.91128 27.07268
#> 2 26.95798 0.08905303 26.86153 27.05320
#> 3 26.98993 0.07106763 26.90997 27.06235
#> 4 27.02671 0.10097714 26.90797 27.10802
#> 5 27.05031 0.16995915 26.87750 27.24939
#>
#> $variable2
#> mean sd 5% quantile 95% quantile
#> 1 8.670714 2.551170 5.397882 11.04419
#> 2 9.503132 1.630232 7.552005 11.18184
#> 3 9.118977 1.524169 7.766884 11.06856
#> 4 8.988245 2.351423 5.853196 10.96696
#> 5 8.664397 2.928960 5.712437 12.31983
#>
#> $variable3
#> mean sd 5% quantile 95% quantile
#> 1 55.59536 2.233550 53.32799 58.40529
#> 2 54.98893 1.516305 53.35327 56.74172
#> 3 55.28232 1.833600 53.00701 57.00237
#> 4 55.15417 2.809968 52.69275 58.74176
#> 5 55.54044 2.833994 51.73034 57.96267
#>
#> $variable4
#> mean sd 5% quantile 95% quantile
#> 1 60.87485 0.9020038 59.70895 61.75769
#> 2 60.76072 0.6749628 59.89296 61.43619
#> 3 60.85504 1.1319120 59.64284 61.90786
#> 4 60.62029 1.8272090 58.47709 62.46330
#> 5 60.82183 1.8892420 58.58892 62.73584
#>