
Provides posterior summary of forecast error variance decompositions
Source:R/summary.R
summary.PosteriorFEVDPANEL.RdProvides posterior means of the forecast error variance decompositions of each variable at all horizons.
Usage
# S3 method for class 'PosteriorFEVDPANEL'
summary(object, which_c, ...)Arguments
- object
an object of class
PosteriorFEVDPANELobtained using thecompute_variance_decompositions()function containing draws from the posterior distribution of the forecast error variance decompositions.- which_c
a positive integer or a character string specifying the country for which the forecast should be plotted.
- ...
additional arguments affecting the summary produced.
Value
A list reporting the posterior mean of the forecast error variance decompositions of each variable at all horizons.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# specify the model and set seed
specification = specify_bvarPANEL$new(ilo_dynamic_panel[1:5], p = 1)
# run the burn-in
burn_in = estimate(specification, 5)
#> **************************************************|
#> bpvars: Forecasting with Bayesian Panel VARs |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 5)
#> **************************************************|
#> bpvars: Forecasting with Bayesian Panel VARs |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute forecast error variance decomposition 4 years ahead
fevd = compute_variance_decompositions(posterior, horizon = 4)
summary(fevd, which_c = "ARG")
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Posterior means of forecast error |
#> variance decompositions |
#> **************************************************|
#> $variable1
#> shock1 shock2 shock3 shock4
#> 0 100.00000 0.000000 0.00000 0.00000
#> 1 52.47700 8.667721 22.42000 16.43528
#> 2 42.60683 10.471100 27.08710 19.83497
#> 3 38.19962 11.279071 29.17345 21.34786
#> 4 35.67999 11.742537 30.36712 22.21035
#>
#> $variable2
#> shock1 shock2 shock3 shock4
#> 0 99.68962 0.3103785 0.00000 0.00000
#> 1 58.50565 6.9938721 19.82316 14.67732
#> 2 41.52526 9.8030863 27.91465 20.75701
#> 3 38.90548 10.2634199 29.08355 21.74755
#> 4 38.61655 10.4703426 29.14046 21.77265
#>
#> $variable3
#> shock1 shock2 shock3 shock4
#> 0 97.763863 0.5462981 1.689839 0.00000
#> 1 2.658713 17.6973106 46.261517 33.38246
#> 2 5.041860 17.2334653 45.084003 32.64067
#> 3 8.047810 16.6750020 43.633958 31.64323
#> 4 10.720598 16.1868823 42.353480 30.73904
#>
#> $variable4
#> shock1 shock2 shock3 shock4
#> 0 0.9971876 16.70805 45.33350 36.96126
#> 1 1.6850489 17.99715 46.34403 33.97377
#> 2 3.1276955 17.86940 45.77805 33.22485
#> 3 4.6597584 17.63606 45.08750 32.61668
#> 4 6.1210601 17.38820 44.40964 32.08110
#>