
Computes posterior draws of the forecast error variance decomposition
Source:R/compute_variance_decompositions.R
      compute_variance_decompositions.RdEach of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the forecast error variance decomposition.
Arguments
- posterior
- posterior estimation outcome obtained by running the - estimatefunction. The interpretation depends on the normalisation of the shocks using function- normalise_posterior(). Verify if the default settings are appropriate.
- horizon
- a positive integer number denoting the forecast horizon for the forecast error variance decomposition computations. 
Value
An object of class PosteriorFEVD, that is, an NxNx(horizon+1)xS array with attribute PosteriorFEVD
containing S draws of the forecast error variance decomposition.
References
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# specify the model
specification  = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in        = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior      = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# compute forecast error variance decomposition 2 years ahead
fevd           = compute_variance_decompositions(posterior, horizon = 8)
# workflow with the pipe |>
############################################################
us_fiscal_lsuw |>
  specify_bsvar$new(p = 1) |>
  estimate(S = 10) |> 
  estimate(S = 20) |> 
  compute_variance_decompositions(horizon = 8) -> fevd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|