Computes posterior draws of the forecast error variance decomposition
Source:R/compute_variance_decompositions.R
compute_variance_decompositions.Rd
Each of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the forecast error variance decomposition.
Arguments
- posterior
posterior estimation outcome obtained by running the
estimate
function. The interpretation depends on the normalisation of the shocks using functionnormalise_posterior()
. Verify if the default settings are appropriate.- horizon
a positive integer number denoting the forecast horizon for the forecast error variance decomposition computations.
Value
An object of class PosteriorFEVD, that is, an NxNx(horizon+1)xS
array with attribute PosteriorFEVD
containing S
draws of the forecast error variance decomposition.
References
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute forecast error variance decomposition 2 years ahead
fevd = compute_variance_decompositions(posterior, horizon = 8)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar$new(p = 1) |>
estimate(S = 10) |>
estimate(S = 20) |>
compute_variance_decompositions(horizon = 8) -> fevd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|