Plots of the posterior means of the forecast error variance decompositions.
Arguments
- x
an object of class
PosteriorFEVDPANEL
obtained using thecompute_variance_decompositions()
function containing posterior draws of forecast error variance decompositions.- which_c
a positive integer or a character string specifying the country for which the forecast should be plotted.
- cols
an
N
-vector with colours of the plot- main
an alternative main title for the plot
- xlab
an alternative x-axis label for the plot
- mar.multi
the default
mar
argument setting ingraphics::par
. Modify with care!- oma.multi
the default
oma
argument setting ingraphics::par
. Modify with care!- ...
additional arguments affecting the summary produced.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
set.seed(123)
specification = specify_bvarPANEL$new(ilo_dynamic_panel)
# run the burn-in
burn_in = estimate(specification, 10)
#> **************************************************|
#> bvarPANELs: Forecasting with Bayesian Hierarchical|
#> Panel Vector Autoregressions |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 20)
#> **************************************************|
#> bvarPANELs: Forecasting with Bayesian Hierarchical|
#> Panel Vector Autoregressions |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute forecast error variance decomposition 4 years ahead
fevd = compute_variance_decompositions(posterior, horizon = 4)
plot(fevd, which_c = "POL")
# workflow with the pipe |>
############################################################
set.seed(123)
ilo_dynamic_panel |>
specify_bvarPANEL$new() |>
estimate(S = 10) |>
estimate(S = 20) |>
compute_variance_decompositions(horizon = 4) |>
plot(which_c = "POL")
#> **************************************************|
#> bvarPANELs: Forecasting with Bayesian Hierarchical|
#> Panel Vector Autoregressions |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bvarPANELs: Forecasting with Bayesian Hierarchical|
#> Panel Vector Autoregressions |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|