Skip to contents

Each of the draws from the posterior estimation of models is transformed into a draw from the posterior distribution of the structural shock conditional standard deviations.

Usage

compute_conditional_sd(posterior)

Arguments

posterior

posterior estimation outcome obtained by running the estimate function. The interpretation depends on the normalisation of the shocks using function normalise(). Verify if the default settings are appropriate.

Value

An object of class PosteriorSigma, that is, an NxTxS array with attribute PosteriorSigma containing S draws of the structural shock conditional standard deviations.

Author

Tomasz Woźniak wozniak.tom@pm.me

Examples

specification  = specify_bsvar$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.
burn_in        = estimate(specification, 5)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 5 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
posterior      = estimate(burn_in, 5)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 5 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
sigma          = compute_conditional_sd(posterior)
#> The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.

# workflow with the pipe |>
############################################################
us_fiscal_lsuw |>
  specify_bsvar$new() |>
  estimate(S = 5) |> 
  estimate(S = 5) |> 
  compute_conditional_sd() -> csd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 5 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 5 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.