Computes posterior draws of structural shock conditional standard deviations
Source:R/compute_conditional_sd.R
compute_conditional_sd.Rd
Each of the draws from the posterior estimation of models is transformed into a draw from the posterior distribution of the structural shock conditional standard deviations.
Arguments
- posterior
posterior estimation outcome obtained by running the
estimate
function. The interpretation depends on the normalisation of the shocks using functionnormalise_posterior()
. Verify if the default settings are appropriate.
Value
An object of class PosteriorSigma
, that is, an NxTxS
array with attribute PosteriorSigma
containing S
draws of the
structural shock conditional standard deviations.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute structural shocks' conditional standard deviations
sigma = compute_conditional_sd(posterior)
#> The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar$new(p = 1) |>
estimate(S = 10) |>
estimate(S = 20) |>
compute_conditional_sd() -> csd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.