Skip to contents

bsvars: Bayesian Estimation of Structural Vector Autoregressive Models

Browse package information

bsvars-package bsvars
Bayesian Estimation of Structural Vector Autoregressive Models

Data

Upload sample data set

us_fiscal_lsuw
A 3-variable US fiscal system for the period 1948 Q1 – 2024 Q2
us_fiscal_ex
A 3-variable system of exogenous variables for the US fiscal model for the period 1948 Q1 – 2024 Q2

Model specification

Choose a model to work with

specify_bsvar
R6 Class representing the specification of the homoskedastic BSVAR model
specify_bsvar_mix
R6 Class representing the specification of the BSVAR model with a zero-mean mixture of normals model for structural shocks.
specify_bsvar_msh
R6 Class representing the specification of the BSVAR model with Markov Switching Heteroskedasticity.
specify_bsvar_sv
R6 Class representing the specification of the BSVAR model with Stochastic Volatility heteroskedasticity.
specify_bsvar_t
R6 Class representing the specification of the BSVAR model with t-distributed structural shocks.

More detailed model specification

Adjust or inspect the specified model

specify_data_matrices
R6 Class Representing DataMatricesBSVAR
specify_identification_bsvars
R6 Class Representing IdentificationBSVARs
specify_prior_bsvar
R6 Class Representing PriorBSVAR
specify_prior_bsvar_mix
R6 Class Representing PriorBSVARMIX
specify_prior_bsvar_msh
R6 Class Representing PriorBSVARMSH
specify_prior_bsvar_sv
R6 Class Representing PriorBSVARSV
specify_prior_bsvar_t
R6 Class Representing PriorBSVART
specify_starting_values_bsvar
R6 Class Representing StartingValuesBSVAR
specify_starting_values_bsvar_mix
R6 Class Representing StartingValuesBSVARMIX
specify_starting_values_bsvar_msh
R6 Class Representing StartingValuesBSVARMSH
specify_starting_values_bsvar_sv
R6 Class Representing StartingValuesBSVARSV
specify_starting_values_bsvar_t
R6 Class Representing StartingValuesBSVART

Estimation

Run Bayesian estimation of your model and inspect the outputs

estimate(<BSVAR>)
Bayesian estimation of a homoskedastic Structural Vector Autoregression via Gibbs sampler
estimate(<BSVARMIX>)
Bayesian estimation of a Structural Vector Autoregression with shocks following a finite mixture of normal components via Gibbs sampler
estimate(<BSVARMSH>)
Bayesian estimation of a Structural Vector Autoregression with Markov-switching heteroskedasticity via Gibbs sampler
estimate(<BSVARSV>)
Bayesian estimation of a Structural Vector Autoregression with Stochastic Volatility heteroskedasticity via Gibbs sampler
estimate(<BSVART>)
Bayesian estimation of a homoskedastic Structural Vector Autoregression with t-distributed structural shocks via Gibbs sampler
estimate(<PosteriorBSVAR>)
Bayesian estimation of a homoskedastic Structural Vector Autoregression via Gibbs sampler
estimate(<PosteriorBSVARMIX>)
Bayesian estimation of a Structural Vector Autoregression with shocks following a finite mixture of normal components via Gibbs sampler
estimate(<PosteriorBSVARMSH>)
Bayesian estimation of a Structural Vector Autoregression with Markov-switching heteroskedasticity via Gibbs sampler
estimate(<PosteriorBSVARSV>)
Bayesian estimation of a Structural Vector Autoregression with Stochastic Volatility heteroskedasticity via Gibbs sampler
estimate(<PosteriorBSVART>)
Bayesian estimation of a homoskedastic Structural Vector Autoregression with t-distributed structural shocks via Gibbs sampler
estimate()
Bayesian estimation of Structural Vector Autoregressions via Gibbs sampler
normalise_posterior()
Waggoner & Zha (2003) row signs normalisation of the posterior draws for matrix \(B\)
specify_posterior_bsvar
R6 Class Representing PosteriorBSVAR
specify_posterior_bsvar_mix
R6 Class Representing PosteriorBSVARMIX
specify_posterior_bsvar_msh
R6 Class Representing PosteriorBSVARMSH
specify_posterior_bsvar_sv
R6 Class Representing PosteriorBSVARSV
specify_posterior_bsvar_t
R6 Class Representing PosteriorBSVART

Posterior summaries

Analyse the posterior summaries of the posterior estimation outcomes

summary(<Forecasts>)
Provides posterior summary of Forecasts
summary(<PosteriorBSVAR>)
Provides posterior summary of homoskedastic Structural VAR estimation
summary(<PosteriorBSVARMIX>)
Provides posterior summary of non-normal Structural VAR estimation
summary(<PosteriorBSVARMSH>)
Provides posterior summary of heteroskedastic Structural VAR estimation
summary(<PosteriorBSVARSV>)
Provides posterior summary of heteroskedastic Structural VAR estimation
summary(<PosteriorBSVART>)
Provides posterior summary of Structural VAR with t-distributed shocks estimation
summary(<PosteriorFEVD>)
Provides posterior summary of forecast error variance decompositions
summary(<PosteriorFitted>)
Provides posterior summary of variables' fitted values
summary(<PosteriorHD>)
Provides posterior summary of historical decompositions
summary(<PosteriorIR>)
Provides posterior summary of impulse responses
summary(<PosteriorRegimePr>)
Provides posterior summary of regime probabilities
summary(<PosteriorShocks>)
Provides posterior summary of structural shocks
summary(<PosteriorSigma>)
Provides posterior summary of structural shocks' conditional standard deviations
summary(<SDDRautoregression>)
Provides summary of verifying hypotheses about autoregressive parameters
summary(<SDDRidMIX>)
Provides summary of verifying shocks' normality
summary(<SDDRidMSH>)
Provides summary of verifying homoskedasticity
summary(<SDDRidSV>)
Provides summary of verifying homoskedasticity
summary(<SDDRidT>)
Provides summary of verifying shocks' normality
summary(<SDDRvolatility>)
Provides summary of verifying homoskedasticity

Forecasting

Predict future values of your variables

forecast(<PosteriorBSVAR>)
Forecasting using Structural Vector Autoregression
forecast(<PosteriorBSVARMIX>)
Forecasting using Structural Vector Autoregression
forecast(<PosteriorBSVARMSH>)
Forecasting using Structural Vector Autoregression
forecast(<PosteriorBSVARSV>)
Forecasting using Structural Vector Autoregression
forecast(<PosteriorBSVART>)
Forecasting using Structural Vector Autoregression
forecast()
Forecasting using Structural Vector Autoregression
us_fiscal_cond_forecasts
A matrix to be used in a conditional forecasting example including the projected values of total tax revenue that are projected to increase at an average quarterly sample growth rate. The other two columns are filled with NA values, which implies that the future values of the corresponding endogenous variables, namely government spending and GDP, will be forecasted given the provided projected values of total tax revenue. The matrix includes future values for the forecast horizon of two years for the US fiscal model for the period 2024 Q3 – 2026 Q2.
us_fiscal_ex_forecasts
A 3-variable system of exogenous variables' future values for the forecast horizon of two years for the US fiscal model for the period 2024 Q3 – 2026 Q2

Structural analyses

Compute interpretable outcomes

compute_conditional_sd(<PosteriorBSVAR>)
Computes posterior draws of structural shock conditional standard deviations
compute_conditional_sd(<PosteriorBSVARMIX>)
Computes posterior draws of structural shock conditional standard deviations
compute_conditional_sd(<PosteriorBSVARMSH>)
Computes posterior draws of structural shock conditional standard deviations
compute_conditional_sd(<PosteriorBSVARSV>)
Computes posterior draws of structural shock conditional standard deviations
compute_conditional_sd(<PosteriorBSVART>)
Computes posterior draws of structural shock conditional standard deviations
compute_conditional_sd()
Computes posterior draws of structural shock conditional standard deviations
compute_fitted_values(<PosteriorBSVAR>)
Computes posterior draws from data predictive density
compute_fitted_values(<PosteriorBSVARMIX>)
Computes posterior draws from data predictive density
compute_fitted_values(<PosteriorBSVARMSH>)
Computes posterior draws from data predictive density
compute_fitted_values(<PosteriorBSVARSV>)
Computes posterior draws from data predictive density
compute_fitted_values(<PosteriorBSVART>)
Computes posterior draws from data predictive density
compute_fitted_values()
Computes posterior draws from data predictive density
compute_historical_decompositions(<PosteriorBSVAR>)
Computes posterior draws of historical decompositions
compute_historical_decompositions(<PosteriorBSVARMIX>)
Computes posterior draws of historical decompositions
compute_historical_decompositions(<PosteriorBSVARMSH>)
Computes posterior draws of historical decompositions
compute_historical_decompositions(<PosteriorBSVARSV>)
Computes posterior draws of historical decompositions
compute_historical_decompositions(<PosteriorBSVART>)
Computes posterior draws of historical decompositions
compute_historical_decompositions()
Computes posterior draws of historical decompositions
compute_impulse_responses(<PosteriorBSVAR>)
Computes posterior draws of impulse responses
compute_impulse_responses(<PosteriorBSVARMIX>)
Computes posterior draws of impulse responses
compute_impulse_responses(<PosteriorBSVARMSH>)
Computes posterior draws of impulse responses
compute_impulse_responses(<PosteriorBSVARSV>)
Computes posterior draws of impulse responses
compute_impulse_responses(<PosteriorBSVART>)
Computes posterior draws of impulse responses
compute_impulse_responses()
Computes posterior draws of impulse responses
compute_regime_probabilities(<PosteriorBSVARMIX>)
Computes posterior draws of regime probabilities
compute_regime_probabilities(<PosteriorBSVARMSH>)
Computes posterior draws of regime probabilities
compute_regime_probabilities()
Computes posterior draws of regime probabilities
compute_structural_shocks(<PosteriorBSVAR>)
Computes posterior draws of structural shocks
compute_structural_shocks(<PosteriorBSVARMIX>)
Computes posterior draws of structural shocks
compute_structural_shocks(<PosteriorBSVARMSH>)
Computes posterior draws of structural shocks
compute_structural_shocks(<PosteriorBSVARSV>)
Computes posterior draws of structural shocks
compute_structural_shocks(<PosteriorBSVART>)
Computes posterior draws of structural shocks
compute_structural_shocks()
Computes posterior draws of structural shocks
compute_variance_decompositions(<PosteriorBSVAR>)
Computes posterior draws of the forecast error variance decomposition
compute_variance_decompositions(<PosteriorBSVARMIX>)
Computes posterior draws of the forecast error variance decomposition
compute_variance_decompositions(<PosteriorBSVARMSH>)
Computes posterior draws of the forecast error variance decomposition
compute_variance_decompositions(<PosteriorBSVARSV>)
Computes posterior draws of the forecast error variance decomposition
compute_variance_decompositions(<PosteriorBSVART>)
Computes posterior draws of the forecast error variance decomposition
compute_variance_decompositions()
Computes posterior draws of the forecast error variance decomposition

Model diagnostics

Verify heteroskedasticity and autoregressive parameters (in preparation: structural identification)

verify_autoregression(<PosteriorBSVAR>)
Verifies hypotheses involving autoregressive parameters
verify_autoregression(<PosteriorBSVARMIX>)
Verifies hypotheses involving autoregressive parameters
verify_autoregression(<PosteriorBSVARMSH>)
Verifies hypotheses involving autoregressive parameters
verify_autoregression(<PosteriorBSVARSV>)
Verifies hypotheses involving autoregressive parameters
verify_autoregression(<PosteriorBSVART>)
Verifies hypotheses involving autoregressive parameters
verify_autoregression()
Verifies hypotheses involving autoregressive parameters
verify_identification(<PosteriorBSVAR>)
Verifies identification through heteroskedasticity or non-normality of of structural shocks
verify_identification(<PosteriorBSVARMIX>)
Verifies identification through heteroskedasticity or non-normality of of structural shocks
verify_identification(<PosteriorBSVARMSH>)
Verifies identification through heteroskedasticity or non-normality of of structural shocks
verify_identification(<PosteriorBSVARSV>)
Verifies identification through heteroskedasticity or non-normality of of structural shocks
verify_identification(<PosteriorBSVART>)
Verifies identification through heteroskedasticity or non-normality of of structural shocks
verify_identification()
Verifies identification through heteroskedasticity or non-normality of of structural shocks
verify_volatility(<PosteriorBSVAR>)
Verifies heteroskedasticity of structural shocks equation by equation
verify_volatility(<PosteriorBSVARMIX>)
Verifies heteroskedasticity of structural shocks equation by equation
verify_volatility(<PosteriorBSVARMSH>)
Verifies heteroskedasticity of structural shocks equation by equation
verify_volatility(<PosteriorBSVARSV>)
Verifies heteroskedasticity of structural shocks equation by equation
verify_volatility()
Verifies heteroskedasticity of structural shocks equation by equation

Plot your results

Prepare beautiful and informative plots for your analyses

plot(<Forecasts>)
Plots fitted values of dependent variables
plot(<PosteriorFEVD>)
Plots forecast error variance decompositions
plot(<PosteriorFitted>)
Plots fitted values of dependent variables
plot(<PosteriorHD>)
Plots historical decompositions
plot(<PosteriorIR>)
Plots impulse responses
plot(<PosteriorRegimePr>)
Plots estimated regime probabilities
plot(<PosteriorShocks>)
Plots structural shocks
plot(<PosteriorSigma>)
Plots structural shocks' conditional standard deviations
plot_ribbon()
Plots the median and an interval between two specified percentiles for a sequence of K random variables