Skip to contents

Each of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the historical decompositions. IMPORTANT! The historical decompositions are interpreted correctly for covariance stationary data. Application to unit-root non-stationary data might result in non-interpretable outcomes.

Usage

compute_historical_decompositions(posterior, show_progress = TRUE)

Arguments

posterior

posterior estimation outcome obtained by running the estimate function. The interpretation depends on the normalisation of the shocks using function normalise(). Verify if the default settings are appropriate.

show_progress

a logical value, if TRUE the estimation progress bar is visible

Value

An object of class PosteriorHD, that is, an NxNxTxS array with attribute PosteriorHD containing S draws of the historical decompositions.

References

Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.

Author

Tomasz Woźniak wozniak.tom@pm.me and Xiaolei Wang adamwang15@gmail.com

Examples

# specify the model
specification  = specify_bsvar$new(diff(us_fiscal_lsuw), p = 1)
#> The identification is set to the default option of lower-triangular structural matrix.

# run the burn-in
burn_in        = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|

# estimate the model
posterior      = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|

# compute historical decompositions
hd            = compute_historical_decompositions(posterior)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|

# workflow with the pipe |>
############################################################
diff(us_fiscal_lsuw) |>
  specify_bsvar$new(p = 1) |>
  estimate(S = 10) |> 
  estimate(S = 20) |> 
  compute_historical_decompositions() -> hd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|