Computes posterior draws of historical decompositions
Source:R/compute_historical_decompositions.R
compute_historical_decompositions.Rd
Each of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the historical decompositions. IMPORTANT! The historical decompositions are interpreted correctly for covariance stationary data. Application to unit-root non-stationary data might result in non-interpretable outcomes.
Arguments
- posterior
posterior estimation outcome obtained by running the
estimate
function. The interpretation depends on the normalisation of the shocks using functionnormalise_posterior()
. Verify if the default settings are appropriate.- show_progress
a logical value, if
TRUE
the estimation progress bar is visible
Value
An object of class PosteriorHD
, that is, an NxNxTxS
array
with attribute PosteriorHD
containing S
draws of the historical
decompositions.
References
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar$new(diff(us_fiscal_lsuw), p = 1)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute historical decompositions
hd = compute_historical_decompositions(posterior)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Computing historical decomposition |
#> **************************************************|
#> This might take a little while :)
#> **************************************************|
# workflow with the pipe |>
############################################################
set.seed(123)
diff(us_fiscal_lsuw) |>
specify_bsvar$new(p = 1) |>
estimate(S = 10) |>
estimate(S = 20) |>
compute_historical_decompositions() -> hd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Computing historical decomposition |
#> **************************************************|
#> This might take a little while :)
#> **************************************************|