
Computes posterior draws of impulse responses
Source:R/compute_impulse_responses.R
      compute_impulse_responses.PosteriorBSVARMIX.RdEach of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the impulse responses.
Usage
# S3 method for class 'PosteriorBSVARMIX'
compute_impulse_responses(posterior, horizon, standardise = FALSE)Arguments
- posterior
- posterior estimation outcome - an object of class - PosteriorBSVARMIXobtained by running the- estimatefunction.
- horizon
- a positive integer number denoting the forecast horizon for the impulse responses computations. 
- standardise
- a logical value. If - TRUE, the impulse responses are standardised so that the variables' own shocks at horizon 0 are equal to 1. Otherwise, the parameter estimates determine this magnitude.
Value
An object of class PosteriorIR, that is, an NxNx(horizon+1)xS array with attribute PosteriorIR
containing S draws of the impulse responses.
References
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# specify the model
specification  = specify_bsvar_mix$new(us_fiscal_lsuw, p = 1, M = 2)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in        = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-finiteMIX model             |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior      = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-finiteMIX model             |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# compute impulse responses
irfs            = compute_impulse_responses(posterior, 4)
# workflow with the pipe |>
############################################################
us_fiscal_lsuw |>
  specify_bsvar_mix$new(p = 1, M = 2) |>
  estimate(S = 10) |> 
  estimate(S = 20) |> 
  compute_impulse_responses(horizon = 4) -> irfs
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-finiteMIX model             |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-finiteMIX model             |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|