
Computes posterior draws of regime probabilities
Source:R/compute_regime_probabilities.R
      compute_regime_probabilities.PosteriorBSVARHMSH.RdEach of the draws from the posterior estimation of a model is transformed into
a draw from the posterior distribution of the regime probabilities. These represent either
the realisations of the regime indicators, when type = "realized", filtered probabilities,
when type = "filtered", forecasted regime probabilities, when type = "forecasted",
or the smoothed probabilities, when type = "smoothed", .
Usage
# S3 method for class 'PosteriorBSVARHMSH'
compute_regime_probabilities(
  posterior,
  type = c("realized", "filtered", "forecasted", "smoothed")
)Value
An object of class PosteriorRegimePr, that is, an MxTxS array with attribute PosteriorRegimePr
containing S draws of the regime probabilities.
References
Song, Y., and Woźniak, T., (2021) Markov Switching. Oxford Research Encyclopedia of Economics and Finance, Oxford University Press, doi:10.1093/acrefore/9780190625979.013.174 .
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# specify the model
specification  = specify_bsvar_hmsh$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in        = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-stationaryHMSH model
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior      = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-stationaryHMSH model
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# compute the posterior draws of realized regime indicators
regimes        = compute_regime_probabilities(posterior)
# compute the posterior draws of filtered probabilities
filtered       = compute_regime_probabilities(posterior, "filtered")
# workflow with the pipe |>
############################################################
us_fiscal_lsuw |>
  specify_bsvar_hmsh$new() |>
  estimate(S = 10) |> 
  estimate(S = 20) -> posterior
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-stationaryHMSH model
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-stationaryHMSH model
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
regimes        = compute_regime_probabilities(posterior)
filtered       = compute_regime_probabilities(posterior, "filtered")