Plots of structural shocks including their median and percentiles.
Arguments
- x
an object of class PosteriorShocks obtained using the
compute_structural_shocks()
function containing posterior draws of structural shocks.- probability
a parameter determining the interval to be plotted. The interval stretches from the
0.5 * (1 - probability)
to1 - 0.5 * (1 - probability)
percentile of the posterior distribution.- col
a colour of the plot line and the ribbon
- main
an alternative main title for the plot
- xlab
an alternative x-axis label for the plot
- mar.multi
the default
mar
argument setting ingraphics::par
. Modify with care!- oma.multi
the default
oma
argument setting ingraphics::par
. Modify with care!- ...
additional arguments affecting the summary produced.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
data(us_fiscal_lsuw) # upload data
set.seed(123) # set seed
specification = specify_bsvar$new(us_fiscal_lsuw) # specify model
#> The identification is set to the default option of lower-triangular structural matrix.
burn_in = estimate(specification, 10) # run the burn-in
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
posterior = estimate(burn_in, 20, thin = 1) # estimate the model
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute structural shocks
shocks = compute_structural_shocks(posterior)
plot(shocks) # plot
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar$new() |>
estimate(S = 10) |>
estimate(S = 20, thin = 1) |>
compute_structural_shocks() |>
plot()
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|