The class PriorBSVART presents a prior specification for the bsvar model with t-distributed structural shocks.
Public fields
- A
- an - NxKmatrix, the mean of the normal prior distribution for the parameter matrix \(A\).
- A_V_inv
- a - KxKprecision matrix of the normal prior distribution for each of the row of the parameter matrix \(A\). This precision matrix is equation invariant.
- B_V_inv
- an - NxNprecision matrix of the generalised-normal prior distribution for the structural matrix \(B\). This precision matrix is equation invariant.
- B_nu
- a positive integer greater of equal than - N, a shape parameter of the generalised-normal prior distribution for the structural matrix \(B\).
- hyper_nu_B
- a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix \(B\). 
- hyper_a_B
- a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix \(B\). 
- hyper_s_BB
- a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix \(B\). 
- hyper_nu_BB
- a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix \(B\). 
- hyper_nu_A
- a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix \(A\). 
- hyper_a_A
- a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix \(A\). 
- hyper_s_AA
- a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix \(A\). 
- hyper_nu_AA
- a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix \(A\). 
