Skip to contents

Provides posterior summary of the impulse responses of each variable to each of the shocks at all horizons. Includes their posterior means, standard deviations, as well as 5 and 95 percentiles.

Usage

# S3 method for class 'PosteriorIR'
summary(object, ...)

Arguments

object

an object of class PosteriorIR obtained using the compute_impulse_responses() function containing draws from the posterior distribution of the impulse responses.

...

additional arguments affecting the summary produced.

Value

A list reporting the posterior mean, standard deviations, as well as 5 and 95 percentiles of the impulse responses of each variable to each of the shocks at all horizons.

Author

Tomasz Woźniak wozniak.tom@pm.me

Examples

# upload data
data(us_fiscal_lsuw)

# specify the model and set seed
set.seed(123)
specification  = specify_bsvar$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.

# run the burn-in
burn_in        = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|

# estimate the model
posterior      = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|

# compute impulse responses
irf            = compute_impulse_responses(posterior, horizon = 4)
irf_summary    = summary(irf)
#>  **************************************************|
#>  bsvars: Bayesian Structural Vector Autoregressions|
#>  **************************************************|
#>    Posterior summary of impulse responses          |
#>  **************************************************|

# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
  specify_bsvar$new() |>
  estimate(S = 10) |> 
  estimate(S = 20) |> 
  compute_impulse_responses(horizon = 4) |>
  summary() -> irf_summary
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#>  **************************************************|
#>  bsvars: Bayesian Structural Vector Autoregressions|
#>  **************************************************|
#>    Posterior summary of impulse responses          |
#>  **************************************************|