Provides summary of the Savage-Dickey density ratios for verification of structural shocks normality. The outcomes can be used to make probabilistic statements about identification through non-normality.
Usage
# S3 method for class 'SDDRidMIX'
summary(object, ...)Arguments
- object
- an object of class - SDDRidMIXobtained using the- verify_identification.PosteriorBSVARMIXfunction.
- ...
- additional arguments affecting the summary produced. 
Value
A table reporting the logarithm of Bayes factors of normal to
non-normal shocks posterior odds "log(SDDR)" for each structural shock,
their numerical standard errors "NSE", and the implied posterior
probability of the normality and non-normality hypothesis,
"Pr[normal|data]" and "Pr[non-normal|data]"
respectively.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification  = specify_bsvar_mix$new(us_fiscal_lsuw, M = 2)
#> The identification is set to the default option of lower-triangular structural matrix.
set.seed(123)
# estimate the model
posterior      = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-finiteMIX model             |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# verify heteroskedasticity
sddr           = verify_identification(posterior)
summary(sddr)
#>  **************************************************|
#>  bsvars: Bayesian Structural Vector Autoregressions|
#>  **************************************************|
#>    Summary of identification verification          |
#>    H0: s^2_nm  = 1 for all m  [normal]             |
#>    H1: s^2_nm != 1 for some m [non-normal]         |
#>  **************************************************|
#>         log(SDDR) NSE Pr[H0|data] Pr[H1|data]
#> shock 1       NaN   0         NaN         NaN
#> shock 2       NaN   0         NaN         NaN
#> shock 3       NaN   0         NaN         NaN
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
  specify_bsvar_mix$new(M = 2) |>
  estimate(S = 10) |> 
  verify_identification() |> 
  summary() -> sddr_summary
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR-finiteMIX model             |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#>  **************************************************|
#>  bsvars: Bayesian Structural Vector Autoregressions|
#>  **************************************************|
#>    Summary of identification verification          |
#>    H0: s^2_nm  = 1 for all m  [normal]             |
#>    H1: s^2_nm != 1 for some m [non-normal]         |
#>  **************************************************|
