Provides summary of the Savage-Dickey density ratios for verification of structural shocks homoskedasticity. The outcomes can be used to make probabilistic statements about identification through heteroskedasticity following Lütkepohl, Shang, Uzeda & Woźniak (2024).
Usage
# S3 method for class 'SDDRidSV'
summary(object, ...)
Arguments
- object
an object of class
SDDRidSV
obtained using theverify_identification.PosteriorBSVARSV
function.- ...
additional arguments affecting the summary produced.
Value
A table reporting the logarithm of Bayes factors of homoskedastic to
heteroskedastic posterior odds "log(SDDR)"
for each structural shock,
their numerical standard errors "NSE"
, and the implied posterior
probability of the homoskedasticity and heteroskedasticity hypothesis,
"Pr[homoskedasticity|data]"
and "Pr[heteroskedasticity|data]"
respectively.
References
Lütkepohl, H., Shang, F., Uzeda, L., and Woźniak, T. (2024) Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference. University of Melbourne Working Paper, 1–57, doi:10.48550/arXiv.2404.11057 .
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_sv$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.
set.seed(123)
# estimate the model
posterior = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-SV model |
#> Non-centred SV model is estimated |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# verify heteroskedasticity
sddr = verify_identification(posterior)
summary(sddr)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Summary of identification verification |
#> H0: omega_n = 0 [homoskedasticity] |
#> H1: omega_n != 0 [heteroskedasticity] |
#> **************************************************|
#> log(SDDR) NSE Pr[H0|data] Pr[H1|data]
#> shock 1 -1.151422 0 2.402294e-01 0.7597706
#> shock 2 -14.727968 0 4.015360e-07 0.9999996
#> shock 3 -1.483494 0 1.849003e-01 0.8150997
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_sv$new() |>
estimate(S = 10) |>
verify_identification() |>
summary() -> sddr_summary
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-SV model |
#> Non-centred SV model is estimated |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Summary of identification verification |
#> H0: omega_n = 0 [homoskedasticity] |
#> H1: omega_n != 0 [heteroskedasticity] |
#> **************************************************|