Provides summary of the Savage-Dickey density ratios for verification of structural shocks normality. The outcomes can be used to make probabilistic statements about identification through non-normality.
Usage
# S3 method for class 'SDDRidT'
summary(object, ...)
Arguments
- object
an object of class
SDDRidT
obtained using theverify_identification.PosteriorBSVART
function.- ...
additional arguments affecting the summary produced.
Value
A table reporting the Bayes factor of normal to
Student-t shocks posterior odds "SDDR"
as well as its logarithm
"log(SDDR)"
for each structural shock, and the implied posterior
probability of the normality and Student-t hypothesis,
"Pr[normal|data]"
and "Pr[Student-t|data]"
respectively.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_t$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.
set.seed(123)
# estimate the model
posterior = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> with t-distributed structural skocks |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# verify heteroskedasticity
sddr = verify_identification(posterior)
summary(sddr)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Summary of identification verification |
#> H0: df = Inf [normal shocks] |
#> H1: df != Inf [Student-t shocks] |
#> **************************************************|
#> log(SDDR) SDDR Pr[H0|data] Pr[H1|data]
#> -Inf 0 0 1
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_t$new() |>
estimate(S = 10) |>
verify_identification() |>
summary() -> sddr_summary
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> with t-distributed structural skocks |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Summary of identification verification |
#> H0: df = Inf [normal shocks] |
#> H1: df != Inf [Student-t shocks] |
#> **************************************************|