
Computes posterior draws of structural shock conditional standard deviations
Source:R/compute_conditional_sd.R
      compute_conditional_sd.PosteriorBSVAR.RdEach of the draws from the posterior estimation of models is transformed into a draw from the posterior distribution of the structural shock conditional standard deviations.
Usage
# S3 method for class 'PosteriorBSVAR'
compute_conditional_sd(posterior)Value
An object of class PosteriorSigma, that is, an NxTxS
array with attribute PosteriorSigma containing S draws of the
structural shock conditional standard deviations.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# specify the model
specification  = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in        = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior      = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# compute structural shocks' conditional standard deviations
sigma          = compute_conditional_sd(posterior)
#> The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.
# workflow with the pipe |>
############################################################
us_fiscal_lsuw |>
  specify_bsvar$new(p = 1) |>
  estimate(S = 10) |> 
  estimate(S = 20) |> 
  compute_conditional_sd() -> csd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.