
Computes posterior draws of structural shock conditional standard deviations
Source:R/compute_conditional_sd.R
compute_conditional_sd.PosteriorBSVART.RdEach of the draws from the posterior estimation of models is transformed into a draw from the posterior distribution of the structural shock conditional standard deviations.
Usage
# S3 method for class 'PosteriorBSVART'
compute_conditional_sd(posterior)Value
An object of class PosteriorSigma, that is, an NxTxS
array with attribute PosteriorSigma containing S draws of the
structural shock conditional standard deviations.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
specification = specify_bsvar_t$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.
burn_in = estimate(specification, 5)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> with t-distributed structural skocks |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
posterior = estimate(burn_in, 5)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> with t-distributed structural skocks |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
csd = compute_conditional_sd(posterior)
#> The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.
# workflow with the pipe |>
############################################################
us_fiscal_lsuw |>
specify_bsvar_t$new() |>
estimate(S = 5) |>
estimate(S = 5) |>
compute_conditional_sd() -> csd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> with t-distributed structural skocks |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> with t-distributed structural skocks |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.