
Computes posterior draws of historical decompositions
Source:R/compute_historical_decompositions.R
compute_historical_decompositions.PosteriorBSVAREXH.RdEach of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the historical decompositions. IMPORTANT! The historical decompositions are interpreted correctly for covariance stationary data. Application to unit-root non-stationary data might result in non-interpretable outcomes.
Usage
# S3 method for class 'PosteriorBSVAREXH'
compute_historical_decompositions(posterior, show_progress = TRUE)Value
An object of class PosteriorHD, that is, an NxNxTxS array
with attribute PosteriorHD containing S draws of the historical
decompositions.
References
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# specify the model
specification = specify_bsvar_exh$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-exH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-exH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute historical decompositions
hd = compute_historical_decompositions(posterior)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Computing historical decomposition |
#> **************************************************|
#> This might take a little while :)
#> **************************************************|
# workflow with the pipe |>
############################################################
us_fiscal_lsuw |>
specify_bsvar_exh$new() |>
estimate(S = 10) |>
estimate(S = 10) |>
compute_historical_decompositions() -> hds
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-exH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-exH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Computing historical decomposition |
#> **************************************************|
#> This might take a little while :)
#> **************************************************|