Skip to contents

Each of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the historical decompositions. IMPORTANT! The historical decompositions are interpreted correctly for covariance stationary data. Application to unit-root non-stationary data might result in non-interpretable outcomes.

Usage

# S3 method for class 'PosteriorBSVART'
compute_historical_decompositions(posterior, show_progress = TRUE)

Arguments

posterior

posterior estimation outcome - an object of class PosteriorBSVART obtained by running the estimate function.

show_progress

a logical value, if TRUE the estimation progress bar is visible

Value

An object of class PosteriorHD, that is, an NxNxTxS array with attribute PosteriorHD containing S draws of the historical decompositions.

References

Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.

Author

Tomasz Woźniak wozniak.tom@pm.me

Examples

# upload data
data(us_fiscal_lsuw)

# specify the model and set seed
set.seed(123)
specification  = specify_bsvar_t$new(diff(us_fiscal_lsuw), p = 1)
#> The identification is set to the default option of lower-triangular structural matrix.

# run the burn-in
burn_in        = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#>     with t-distributed structural skocks          |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|

# estimate the model
posterior      = estimate(burn_in, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#>     with t-distributed structural skocks          |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|

# compute historical decompositions
hd            = compute_historical_decompositions(posterior)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|

# workflow with the pipe |>
############################################################
set.seed(123)
diff(us_fiscal_lsuw) |>
  specify_bsvar_t$new(p = 1) |>
  estimate(S = 10) |> 
  estimate(S = 10) |> 
  compute_historical_decompositions() -> hd
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#>     with t-distributed structural skocks          |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#>     with t-distributed structural skocks          |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|