Computes posterior draws of impulse responses
Source:R/compute_impulse_responses.R
compute_impulse_responses.PosteriorBSVARMSH.Rd
Each of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the impulse responses.
Usage
# S3 method for class 'PosteriorBSVARMSH'
compute_impulse_responses(posterior, horizon, standardise = FALSE)
Arguments
- posterior
posterior estimation outcome - an object of class
PosteriorBSVARMSH
obtained by running theestimate
function.- horizon
a positive integer number denoting the forecast horizon for the impulse responses computations.
- standardise
a logical value. If
TRUE
, the impulse responses are standardised so that the variables' own shocks at horizon 0 are equal to 1. Otherwise, the parameter estimates determine this magnitude.
Value
An object of class PosteriorIR, that is, an NxNx(horizon+1)xS
array with attribute PosteriorIR
containing S
draws of the impulse responses.
References
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 1, M = 2)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute impulse responses
irfs = compute_impulse_responses(posterior, 4)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_msh$new(p = 1, M = 2) |>
estimate(S = 10) |>
estimate(S = 20) |>
compute_impulse_responses(horizon = 4) -> irfs
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|