R6 Class representing the specification of the BSVAR model with Markov Switching Heteroskedasticity.
Source:R/specify_bsvar_msh.R
specify_bsvar_msh.Rd
The class BSVARMSH presents complete specification for the BSVAR model with Markov Switching Heteroskedasticity.
Public fields
p
a non-negative integer specifying the autoregressive lag order of the model.
identification
an object IdentificationBSVARs with the identifying restrictions.
prior
an object PriorBSVARMSH with the prior specification.
data_matrices
an object DataMatricesBSVAR with the data matrices.
starting_values
an object StartingValuesBSVARMSH with the starting values.
finiteM
a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which
M=20
and the number of visited states is estimated.
Methods
Method new()
Create a new specification of the BSVAR model with Markov Switching Heteroskedasticity, BSVARMSH.
Usage
specify_bsvar_msh$new(
data,
p = 1L,
M = 2L,
B,
exogenous = NULL,
stationary = rep(FALSE, ncol(data)),
finiteM = TRUE
)
Arguments
data
a
(T+p)xN
matrix with time series data.p
a positive integer providing model's autoregressive lag order.
M
an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
B
a logical
NxN
matrix containing valueTRUE
for the elements of the structural matrix \(B\) to be estimated and valueFALSE
for exclusion restrictions to be set to zero.exogenous
a
(T+p)xd
matrix of exogenous variables.stationary
an
N
logical vector - its element set toFALSE
sets the prior mean for the autoregressive parameters of theN
th equation to the white noise process, otherwise to random walk.finiteM
a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which
M=20
and the number of visited states is estimated.
Method get_data_matrices()
Returns the data matrices as the DataMatricesBSVAR object.
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_data_matrices()
Method get_identification()
Returns the identifying restrictions as the IdentificationBSVARs object.
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_identification()
Method get_prior()
Returns the prior specification as the PriorBSVARMSH object.
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_prior()
Method get_starting_values()
Returns the starting values as the StartingValuesBSVARMSH object.
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
spec$get_starting_values()
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
#> The identification is set to the default option of lower-triangular structural matrix.
## ------------------------------------------------
## Method `specify_bsvar_msh$get_data_matrices`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
#> The identification is set to the default option of lower-triangular structural matrix.
spec$get_data_matrices()
#> <DataMatricesBSVAR>
#> Public:
#> X: -10.6660327703266 -10.6935259109068 -8.41420587851191 -1 ...
#> Y: -10.6725356416822 -10.6388624265757 -8.42993325328991 -1 ...
#> clone: function (deep = FALSE)
#> get_data_matrices: function ()
#> initialize: function (data, p = 1L, exogenous = NULL)
## ------------------------------------------------
## Method `specify_bsvar_msh$get_identification`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
#> The identification is set to the default option of lower-triangular structural matrix.
spec$get_identification()
#> <IdentificationBSVARs>
#> Public:
#> VB: list
#> clone: function (deep = FALSE)
#> get_identification: function ()
#> initialize: function (N, B)
#> set_identification: function (N, B)
## ------------------------------------------------
## Method `specify_bsvar_msh$get_prior`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
#> The identification is set to the default option of lower-triangular structural matrix.
spec$get_prior()
#> <PriorBSVARMSH>
#> Inherits from: <PriorBSVAR>
#> Public:
#> A: 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
#> A_V_inv: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
#> B_V_inv: 1 0 0 0 1 0 0 0 1
#> B_nu: 3
#> PR_TR: 1 1 1 1
#> clone: function (deep = FALSE)
#> get_prior: function ()
#> hyper_a_A: 10
#> hyper_a_B: 10
#> hyper_nu_A: 10
#> hyper_nu_AA: 10
#> hyper_nu_B: 10
#> hyper_nu_BB: 1
#> hyper_s_AA: 10
#> hyper_s_BB: 100
#> initialize: function (N, p, d = 0, M, stationary = rep(FALSE, N))
#> sigma_nu: 3
#> sigma_s: 1
## ------------------------------------------------
## Method `specify_bsvar_msh$get_starting_values`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_msh$new(
data = us_fiscal_lsuw,
p = 4,
M = 2
)
#> The identification is set to the default option of lower-triangular structural matrix.
spec$get_starting_values()
#> <StartingValuesBSVARMSH>
#> Inherits from: <StartingValuesBSVAR>
#> Public:
#> A: 0.833368122810498 0 0 0 0.59280195296742 0 0 0 0.7511614 ...
#> B: 1 0 0 0 1 0 0 0 1
#> PR_TR: 1 0 0 1
#> clone: function (deep = FALSE)
#> get_starting_values: function ()
#> hyper: 10 10 10 10 10 10 10 10 10 10 10 10 10 10
#> initialize: function (N, p, M, T, d = 0, finiteM = TRUE)
#> pi_0: 0.5 0.5
#> set_starting_values: function (last_draw)
#> sigma2: 1 1 1 1 1 1
#> xi: 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 ...