Computes posterior draws of regime probabilities
Source:R/compute_regime_probabilities.R
compute_regime_probabilities.PosteriorBSVARMSH.Rd
Each of the draws from the posterior estimation of a model is transformed into
a draw from the posterior distribution of the regime probabilities. These represent either
the realisations of the regime indicators, when type = "realized"
, filtered probabilities,
when type = "filtered"
, forecasted regime probabilities, when type = "forecasted"
,
or the smoothed probabilities, when type = "smoothed"
, .
Usage
# S3 method for class 'PosteriorBSVARMSH'
compute_regime_probabilities(
posterior,
type = c("realized", "filtered", "forecasted", "smoothed")
)
Value
An object of class PosteriorRegimePr, that is, an MxTxS
array with attribute PosteriorRegimePr
containing S
draws of the regime probabilities.
References
Song, Y., and Woźniak, T., (2021) Markov Switching. Oxford Research Encyclopedia of Economics and Finance, Oxford University Press, doi:10.1093/acrefore/9780190625979.013.174 .
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 2, M = 2)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute the posterior draws of realized regime indicators
regimes = compute_regime_probabilities(posterior)
# compute the posterior draws of filtered probabilities
filtered = compute_regime_probabilities(posterior, "filtered")
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_msh$new(p = 1, M = 2) |>
estimate(S = 10) |>
estimate(S = 20) -> posterior
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
regimes = compute_regime_probabilities(posterior)
filtered = compute_regime_probabilities(posterior, "filtered")