Plots of the posterior means of the historical decompositions.
Arguments
- x
an object of class PosteriorHD obtained using the
compute_historical_decompositions()
function containing posterior draws of historical decompositions.- shock_names
a vector of length
N
containing names of the structural shocks.- cols
an
N
-vector with colours of the plot- main
an alternative main title for the plot
- xlab
an alternative x-axis label for the plot
- mar.multi
the default
mar
argument setting ingraphics::par
. Modify with care!- oma.multi
the default
oma
argument setting ingraphics::par
. Modify with care!- ...
additional arguments affecting the summary produced.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
data(us_fiscal_lsuw) # upload data
set.seed(123) # set seed
specification = specify_bsvar$new(us_fiscal_lsuw) # specify model
#> The identification is set to the default option of lower-triangular structural matrix.
burn_in = estimate(specification, 10) # run the burn-in
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
posterior = estimate(burn_in, 20, thin = 1) # estimate the model
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute historical decompositions
fevd = compute_historical_decompositions(posterior)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Computing historical decomposition |
#> **************************************************|
#> This might take a little while :)
#> **************************************************|
plot(fevd)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar$new() |>
estimate(S = 10) |>
estimate(S = 20, thin = 1) |>
compute_historical_decompositions() |>
plot()
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Computing historical decomposition |
#> **************************************************|
#> This might take a little while :)
#> **************************************************|