Plots of the posterior means of the historical decompositions.
Arguments
- x
- an object of class PosteriorHD obtained using the - compute_historical_decompositions()function containing posterior draws of historical decompositions.
- shock_names
- a vector of length - Ncontaining names of the structural shocks.
- cols
- an - N-vector with colours of the plot
- main
- an alternative main title for the plot 
- xlab
- an alternative x-axis label for the plot 
- mar.multi
- the default - marargument setting in- graphics::par. Modify with care!
- oma.multi
- the default - omaargument setting in- graphics::par. Modify with care!
- ...
- additional arguments affecting the summary produced. 
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
data(us_fiscal_lsuw)                                  # upload data
set.seed(123)                                         # set seed
specification  = specify_bsvar$new(us_fiscal_lsuw)    # specify model
#> The identification is set to the default option of lower-triangular structural matrix.
burn_in        = estimate(specification, 10)          # run the burn-in
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
posterior      = estimate(burn_in, 20, thin = 1)      # estimate the model
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# compute historical decompositions
fevd           = compute_historical_decompositions(posterior)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|
plot(fevd)                                            
 # workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
  specify_bsvar$new() |>
  estimate(S = 10) |> 
  estimate(S = 20, thin = 1) |> 
  compute_historical_decompositions() |>
  plot()
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
  specify_bsvar$new() |>
  estimate(S = 10) |> 
  estimate(S = 20, thin = 1) |> 
  compute_historical_decompositions() |>
  plot()
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|
