
R6 Class Representing StartingValuesBSVAR
Source:R/specify_bsvar.R
      specify_starting_values_bsvar.RdThe class StartingValuesBSVAR presents starting values for the homoskedastic bsvar model.
Public fields
- A
- an - NxKmatrix of starting values for the parameter \(A\).
- B
- an - NxNmatrix of starting values for the parameter \(B\).
- hyper
- a - (2*N+1)x2matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.
- lambda
- a - NxTmatrix of starting values for latent variables.
- df
- an - Nx1vector of positive numbers with starting values for the equation-specific degrees of freedom parameters of the Student-t conditional distribution of structural shocks.
Methods
Method new()
Create new starting values StartingValuesBSVAR.
Usage
specify_starting_values_bsvar$new(A, B, N, T, p, d = 0)Arguments
- A
- a logical - NxKmatrix containing value- TRUEfor the elements of the autoregressive matrix \(A\) to be estimated and value- FALSEfor exclusion restrictions to be set to zero.
- B
- a logical - NxNmatrix containing value- TRUEfor the elements of the staructural matrix \(B\) to be estimated and value- FALSEfor exclusion restrictions to be set to zero.
- N
- a positive integer - the number of dependent variables in the model. 
- T
- a positive integer - the number of time periods in the data. 
- p
- a positive integer - the autoregressive lag order of the SVAR model. 
- d
- a positive integer - the number of - exogenousvariables in the model.
Examples
# starting values for a homoskedastic bsvar with 4 lags for a 3-variable system
A = matrix(TRUE, 3, 13)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar$new(A = A, B = B, N = 3, T = 120, p = 4)
Method get_starting_values()
Returns the elements of the starting values StartingValuesBSVAR as a list.
Examples
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar$new(A = A, B = B, N = 3, T = 120, p = 1)
sv$get_starting_values()   # show starting values as list
Method set_starting_values()
Returns the elements of the starting values StartingValuesBSVAR as a list.
Arguments
- last_draw
- a list containing the last draw of elements - B- an- NxNmatrix,- A- an- NxKmatrix, and- hyper- a vector of 5 positive real numbers.
Returns
An object of class StartingValuesBSVAR including the last draw of the current MCMC
as the starting value to be passed to the continuation of the MCMC estimation using estimate().
Examples
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar$new(A = A, B = B, N = 3, T = 120, p = 1)
# Modify the starting values by:
sv_list = sv$get_starting_values()   # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list)      # providing to the class object
Examples
# starting values for a homoskedastic bsvar for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar$new(A = A, B = B, N = 3, T = 120, p = 1)
## ------------------------------------------------
## Method `specify_starting_values_bsvar$new`
## ------------------------------------------------
# starting values for a homoskedastic bsvar with 4 lags for a 3-variable system
A = matrix(TRUE, 3, 13)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar$new(A = A, B = B, N = 3, T = 120, p = 4)
## ------------------------------------------------
## Method `specify_starting_values_bsvar$get_starting_values`
## ------------------------------------------------
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar$new(A = A, B = B, N = 3, T = 120, p = 1)
sv$get_starting_values()   # show starting values as list
#> $B
#>          [,1]      [,2]       [,3]
#> [1,] 0.868198 0.0000000 0.00000000
#> [2,] 0.000000 0.7464614 0.00000000
#> [3,] 0.000000 0.0000000 0.07788095
#> 
#> $A
#>           [,1]      [,2]      [,3] [,4]
#> [1,] 0.3449137 0.0000000 0.0000000    0
#> [2,] 0.0000000 0.0876102 0.0000000    0
#> [3,] 0.0000000 0.0000000 0.1795321    0
#> 
#> $hyper
#>      [,1] [,2]
#> [1,]   10   10
#> [2,]   10   10
#> [3,]   10   10
#> [4,]   10   10
#> [5,]   10   10
#> [6,]   10   10
#> [7,]   10   10
#> 
#> $lambda
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]    1    1    1    1    1    1    1    1    1     1     1     1     1     1
#> [2,]    1    1    1    1    1    1    1    1    1     1     1     1     1     1
#> [3,]    1    1    1    1    1    1    1    1    1     1     1     1     1     1
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [2,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [3,]     1     1     1     1     1     1     1     1     1     1     1     1
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [2,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [3,]     1     1     1     1     1     1     1     1     1     1     1     1
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [2,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [3,]     1     1     1     1     1     1     1     1     1     1     1     1
#>      [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
#> [1,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [2,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [3,]     1     1     1     1     1     1     1     1     1     1     1     1
#>      [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74]
#> [1,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [2,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [3,]     1     1     1     1     1     1     1     1     1     1     1     1
#>      [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [2,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [3,]     1     1     1     1     1     1     1     1     1     1     1     1
#>      [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98]
#> [1,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [2,]     1     1     1     1     1     1     1     1     1     1     1     1
#> [3,]     1     1     1     1     1     1     1     1     1     1     1     1
#>      [,99] [,100] [,101] [,102] [,103] [,104] [,105] [,106] [,107] [,108]
#> [1,]     1      1      1      1      1      1      1      1      1      1
#> [2,]     1      1      1      1      1      1      1      1      1      1
#> [3,]     1      1      1      1      1      1      1      1      1      1
#>      [,109] [,110] [,111] [,112] [,113] [,114] [,115] [,116] [,117] [,118]
#> [1,]      1      1      1      1      1      1      1      1      1      1
#> [2,]      1      1      1      1      1      1      1      1      1      1
#> [3,]      1      1      1      1      1      1      1      1      1      1
#>      [,119] [,120]
#> [1,]      1      1
#> [2,]      1      1
#> [3,]      1      1
#> 
#> $df
#> [1] 3 3 3
#> 
## ------------------------------------------------
## Method `specify_starting_values_bsvar$set_starting_values`
## ------------------------------------------------
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar$new(A = A, B = B, N = 3, T = 120, p = 1)
# Modify the starting values by:
sv_list = sv$get_starting_values()   # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list)      # providing to the class object