
R6 Class Representing StartingValuesBSVAREXH
Source:R/specify_bsvar_exh.R
specify_starting_values_bsvar_exh.RdThe class StartingValuesBSVAREXH presents starting values for the bsvar model with exogenous regime change Heteroskedasticity.
Public fields
Aan
NxKmatrix of starting values for the parameter \(A\).Ban
NxNmatrix of starting values for the parameter \(B\).hypera
(2*N+1)x2matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.sigma2an
NxMmatrix of starting values for the regime-specific variances of the structural shocks. Its elements sum to valueMover the rows.xian
MxTmatrix of starting values for the Markov process indicator. Its columns are a chosen column of an identity matrix of orderM.lambdaa
NxTmatrix of starting values for latent variables.dfan
Nx1vector of positive numbers with starting values for the equation-specific degrees of freedom parameters of the Student-t conditional distribution of structural shocks.
Methods
Method new()
Create new starting values StartingValuesBSVAREXH.
Usage
specify_starting_values_bsvar_exh$new(
A,
B,
N,
p,
T,
d = 0,
variance_regimes = rep(1, T)
)Arguments
Aa logical
NxKmatrix containing valueTRUEfor the elements of the autoregressive matrix \(A\) to be estimated and valueFALSEfor exclusion restrictions to be set to zero.Ba logical
NxNmatrix containing valueTRUEfor the elements of the structural matrix \(B\) to be estimated and valueFALSEfor exclusion restrictions to be set to zero.Na positive integer - the number of dependent variables in the model.
pa positive integer - the autoregressive lag order of the SVAR model.
Ta positive integer - the the time series dimension of the dependent variable matrix \(Y\).
da positive integer - the number of
exogenousvariables in the model.variance_regimesa
T-vector with exogenous regime indicators that are integer numbers associating the time observation with heteroskedastic regime.
Method get_starting_values()
Returns the elements of the starting values StartingValuesBSVAR-MS as a list.
Examples
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar_exh$new(A = A, B = B, N = 3, p = 1, T = 100)
sv$get_starting_values() # show starting values as list
Method set_starting_values()
Returns the elements of the starting values StartingValuesBSVAREXH as a list.
Returns
An object of class StartingValuesBSVAREXH including the last draw
of the current MCMC as the starting value to be passed to the continuation
of the MCMC estimation using estimate().
Examples
# starting values for a bsvar model with 1 lag for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar_exh$new(A = A, B = B, N = 3, p = 1, T = 100)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object
Examples
# starting values for a bsvar model for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar_exh$new(A = A, B = B, N = 3, p = 1, T = 100)
## ------------------------------------------------
## Method `specify_starting_values_bsvar_exh$get_starting_values`
## ------------------------------------------------
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar_exh$new(A = A, B = B, N = 3, p = 1, T = 100)
sv$get_starting_values() # show starting values as list
#> $B
#> [,1] [,2] [,3]
#> [1,] 0.3147406 0.0000000 0.00000000
#> [2,] 0.0000000 0.5344773 0.00000000
#> [3,] 0.0000000 0.0000000 0.06669954
#>
#> $A
#> [,1] [,2] [,3] [,4]
#> [1,] 0.2735388 0.0000000 0.0000000 0
#> [2,] 0.0000000 0.6417401 0.0000000 0
#> [3,] 0.0000000 0.0000000 0.5839934 0
#>
#> $hyper
#> [,1] [,2]
#> [1,] 10 10
#> [2,] 10 10
#> [3,] 10 10
#> [4,] 10 10
#> [5,] 10 10
#> [6,] 10 10
#> [7,] 10 10
#>
#> $lambda
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,99] [,100]
#> [1,] 1 1
#> [2,] 1 1
#> [3,] 1 1
#>
#> $df
#> [1] 3 3 3
#>
#> $sigma2
#> [,1]
#> [1,] 1
#> [2,] 1
#> [3,] 1
#>
#> $xi
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,99] [,100]
#> [1,] 1 1
#>
## ------------------------------------------------
## Method `specify_starting_values_bsvar_exh$set_starting_values`
## ------------------------------------------------
# starting values for a bsvar model with 1 lag for a 3-variable system
A = matrix(TRUE, 3, 4)
B = matrix(TRUE, 3, 3)
sv = specify_starting_values_bsvar_exh$new(A = A, B = B, N = 3, p = 1, T = 100)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object