
R6 Class Representing StartingValuesBSVARMIX
Source:R/specify_bsvar_mix.R
      specify_starting_values_bsvar_mix.RdThe class StartingValuesBSVARMIX presents starting values for the bsvar model with a zero-mean mixture of normals model for structural shocks.
Super classes
bsvars::StartingValuesBSVAR -> bsvars::StartingValuesBSVARMSH -> StartingValuesBSVARMIX
Public fields
- A
- an - NxKmatrix of starting values for the parameter \(A\).
- B
- an - NxNmatrix of starting values for the parameter \(B\).
- hyper
- a - (2*N+1)x2matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.
- sigma2
- an - NxMmatrix of starting values for the MS state-specific variances of the structural shocks. Its elements sum to value- Mover the rows.
- PR_TR
- an - MxMmatrix of starting values for the probability matrix of the Markov process. Its rows must be identical and the elements of each row sum to 1 over the rows.
- xi
- an - MxTmatrix of starting values for the Markov process indicator. Its columns are a chosen column of an identity matrix of order- M.
- pi_0
- an - M-vector of starting values for mixture components state probabilities. Its elements sum to 1.
- lambda
- a - NxTmatrix of starting values for latent variables.
- df
- an - Nx1vector of positive numbers with starting values for the equation-specific degrees of freedom parameters of the Student-t conditional distribution of structural shocks.
Methods
Method new()
Create new starting values StartingValuesBSVARMIX.
Usage
specify_starting_values_bsvar_mix$new(A, B, N, p, M, T, d = 0, finiteM = TRUE)Arguments
- A
- a logical - NxKmatrix containing value- TRUEfor the elements of the autoregressive matrix \(A\) to be estimated and value- FALSEfor exclusion restrictions to be set to zero.
- B
- a logical - NxNmatrix containing value- TRUEfor the elements of the staructural matrix \(B\) to be estimated and value- FALSEfor exclusion restrictions to be set to zero.
- N
- a positive integer - the number of dependent variables in the model. 
- p
- a positive integer - the autoregressive lag order of the SVAR model. 
- M
- an integer greater than 1 - the number of components of the mixture of normals. 
- T
- a positive integer - the the time series dimension of the dependent variable matrix \(Y\). 
- d
- a positive integer - the number of - exogenousvariables in the model.
- finiteM
- a logical value - if true a finite mixture model is estimated. Otherwise, a sparse mixture model is estimated in which - M=20and the number of visited states is estimated.