
R6 Class Representing StartingValuesBSVARMIX
Source:R/specify_bsvar_mix.R
specify_starting_values_bsvar_mix.RdThe class StartingValuesBSVARMIX presents starting values for the bsvar model with a zero-mean mixture of normals model for structural shocks.
Super classes
bsvars::StartingValuesBSVAR -> bsvars::StartingValuesBSVARMSH -> StartingValuesBSVARMIX
Public fields
Aan
NxKmatrix of starting values for the parameter \(A\).Ban
NxNmatrix of starting values for the parameter \(B\).hypera
(2*N+1)x2matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.sigma2an
NxMmatrix of starting values for the MS state-specific variances of the structural shocks. Its elements sum to valueMover the rows.PR_TRan
MxMmatrix of starting values for the probability matrix of the Markov process. Its rows must be identical and the elements of each row sum to 1 over the rows.xian
MxTmatrix of starting values for the Markov process indicator. Its columns are a chosen column of an identity matrix of orderM.pi_0an
M-vector of starting values for mixture components state probabilities. Its elements sum to 1.lambdaa
NxTmatrix of starting values for latent variables.dfan
Nx1vector of positive numbers with starting values for the equation-specific degrees of freedom parameters of the Student-t conditional distribution of structural shocks.
Methods
Method new()
Create new starting values StartingValuesBSVARMIX.
Usage
specify_starting_values_bsvar_mix$new(A, B, N, p, M, T, d = 0, finiteM = TRUE)Arguments
Aa logical
NxKmatrix containing valueTRUEfor the elements of the autoregressive matrix \(A\) to be estimated and valueFALSEfor exclusion restrictions to be set to zero.Ba logical
NxNmatrix containing valueTRUEfor the elements of the staructural matrix \(B\) to be estimated and valueFALSEfor exclusion restrictions to be set to zero.Na positive integer - the number of dependent variables in the model.
pa positive integer - the autoregressive lag order of the SVAR model.
Man integer greater than 1 - the number of components of the mixture of normals.
Ta positive integer - the the time series dimension of the dependent variable matrix \(Y\).
da positive integer - the number of
exogenousvariables in the model.finiteMa logical value - if true a finite mixture model is estimated. Otherwise, a sparse mixture model is estimated in which
M=20and the number of visited states is estimated.