R6 Class Representing StartingValuesBSVARMSH
Source:R/specify_bsvar_msh.R
specify_starting_values_bsvar_msh.Rd
The class StartingValuesBSVARMSH presents starting values for the bsvar model with Markov Switching Heteroskedasticity.
Public fields
A
an
NxK
matrix of starting values for the parameter \(A\).B
an
NxN
matrix of starting values for the parameter \(B\).hyper
a
(2*N+1)x2
matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.sigma2
an
NxM
matrix of starting values for the MS state-specific variances of the structural shocks. Its elements sum to valueM
over the rows.PR_TR
an
MxM
matrix of starting values for the transition probability matrix of the Markov process. Its elements sum to 1 over the rows.xi
an
MxT
matrix of starting values for the Markov process indicator. Its columns are a chosen column of an identity matrix of orderM
.pi_0
an
M
-vector of starting values for state probability at timet=0
. Its elements sum to 1.
Methods
Method new()
Create new starting values StartingValuesBSVAR-MS.
Usage
specify_starting_values_bsvar_msh$new(N, p, M, T, d = 0, finiteM = TRUE)
Arguments
N
a positive integer - the number of dependent variables in the model.
p
a positive integer - the autoregressive lag order of the SVAR model.
M
an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
T
a positive integer - the the time series dimension of the dependent variable matrix \(Y\).
d
a positive integer - the number of
exogenous
variables in the model.finiteM
a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which
M=20
and the number of visited states is estimated.
Method get_starting_values()
Returns the elements of the starting values StartingValuesBSVAR-MS as a list
.
Examples
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
sv$get_starting_values() # show starting values as list
Method set_starting_values()
Returns the elements of the starting values StartingValuesBSVARMSH as a list
.
Returns
An object of class StartingValuesBSVAR-MS including the last draw of the current MCMC as the starting value to be passed to the continuation of the MCMC estimation using estimate()
.
Examples
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object
Examples
# starting values for a bsvar model for a 3-variable system
sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
## ------------------------------------------------
## Method `specify_starting_values_bsvar_msh$get_starting_values`
## ------------------------------------------------
# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
sv$get_starting_values() # show starting values as list
#> $B
#> [,1] [,2] [,3]
#> [1,] 1 0 0
#> [2,] 0 1 0
#> [3,] 0 0 1
#>
#> $A
#> [,1] [,2] [,3] [,4]
#> [1,] 0.5973771 0.0000000 0.0000000 0
#> [2,] 0.0000000 0.9391536 0.0000000 0
#> [3,] 0.0000000 0.0000000 0.7283323 0
#>
#> $hyper
#> [,1] [,2]
#> [1,] 10 10
#> [2,] 10 10
#> [3,] 10 10
#> [4,] 10 10
#> [5,] 10 10
#> [6,] 10 10
#> [7,] 10 10
#>
#> $sigma2
#> [,1] [,2]
#> [1,] 1 1
#> [2,] 1 1
#> [3,] 1 1
#>
#> $PR_TR
#> [,1] [,2]
#> [1,] 1 0
#> [2,] 0 1
#>
#> $xi
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] 0 0 1 0 1 1 0 0 0 0 1 0 1 1
#> [2,] 1 1 0 1 0 0 1 1 1 1 0 1 0 0
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 1 1 1 0 1 0 1 1 1 0 0 1
#> [2,] 0 0 0 1 0 1 0 0 0 1 1 0
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0 1 0 1 0 0 1 1 1 1 1 0
#> [2,] 1 0 1 0 1 1 0 0 0 0 0 1
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0 0 0 0 1 1 1 1 0 1 1 1
#> [2,] 1 1 1 1 0 0 0 0 1 0 0 0
#> [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
#> [1,] 0 1 1 1 0 1 0 1 1 0 0 1
#> [2,] 1 0 0 0 1 0 1 0 0 1 1 0
#> [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74]
#> [1,] 0 1 1 0 1 1 0 1 0 1 1 0
#> [2,] 1 0 0 1 0 0 1 0 1 0 0 1
#> [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,] 0 0 1 0 0 1 0 1 0 0 1 0
#> [2,] 1 1 0 1 1 0 1 0 1 1 0 1
#> [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98]
#> [1,] 1 1 0 0 1 0 0 1 0 0 0 1
#> [2,] 0 0 1 1 0 1 1 0 1 1 1 0
#> [,99] [,100]
#> [1,] 1 0
#> [2,] 0 1
#>
#> $pi_0
#> [1] 0.5 0.5
#>
## ------------------------------------------------
## Method `specify_starting_values_bsvar_msh$set_starting_values`
## ------------------------------------------------
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object