R6 Class Representing StartingValuesBSVARSV
Source:R/specify_bsvar_sv.R
specify_starting_values_bsvar_sv.Rd
The class StartingValuesBSVARSV presents starting values for the bsvar model with Stochastic Volatility heteroskedasticity.
Public fields
A
an
NxK
matrix of starting values for the parameter \(A\).B
an
NxN
matrix of starting values for the parameter \(B\).hyper
a
(2*N+1)x2
matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.h
an
NxT
matrix with the starting values of the log-volatility processes.rho
an
N
-vector with values of SV autoregressive parameters.omega
an
N
-vector with values of SV process conditional standard deviations.sigma2v
an
N
-vector with values of SV process conditional variances.S
an
NxT
integer matrix with the auxiliary mixture component indicators.sigma2_omega
an
N
-vector with variances of the zero-mean normal prior for \(\omega_n\).s_
a positive scalar with the scale of the gamma prior of the hierarchical prior for \(\sigma^2_{\omega}\).
Methods
Method new()
Create new starting values StartingValuesBSVARSV.
Usage
specify_starting_values_bsvar_sv$new(N, p, T, d = 0)
Arguments
N
a positive integer - the number of dependent variables in the model.
p
a positive integer - the autoregressive lag order of the SVAR model.
T
a positive integer - the the time series dimension of the dependent variable matrix \(Y\).
d
a positive integer - the number of
exogenous
variables in the model.
Method get_starting_values()
Returns the elements of the starting values StartingValuesBSVARSV as a list
.
Examples
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
sv$get_starting_values() # show starting values as list
Method set_starting_values()
Returns the elements of the starting values StartingValuesBSVAR_SV as a list
.
Returns
An object of class StartingValuesBSVAR including the last draw of the current MCMC as the starting value to be passed to the continuation of the MCMC estimation using estimate()
.
Examples
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object
Examples
# starting values for a bsvar model for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
## ------------------------------------------------
## Method `specify_starting_values_bsvar_sv$get_starting_values`
## ------------------------------------------------
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
sv$get_starting_values() # show starting values as list
#> $B
#> [,1] [,2] [,3]
#> [1,] 1 0 0
#> [2,] 0 1 0
#> [3,] 0 0 1
#>
#> $A
#> [,1] [,2] [,3] [,4]
#> [1,] 0.8457883 0.0000000 0.0000000 0
#> [2,] 0.0000000 0.9116633 0.0000000 0
#> [3,] 0.0000000 0.0000000 0.3401287 0
#>
#> $hyper
#> [,1] [,2]
#> [1,] 10 10
#> [2,] 10 10
#> [3,] 10 10
#> [4,] 10 10
#> [5,] 10 10
#> [6,] 10 10
#> [7,] 10 10
#>
#> $h
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.0061547568 -0.0009748829 0.017424056 0.0032085934 0.01181298
#> [2,] -0.0005394542 0.0065970443 -0.003433439 0.0079229965 -0.01231080
#> [3,] 0.0110525190 -0.0003763769 -0.006247019 0.0008192614 0.00277681
#> [,6] [,7] [,8] [,9] [,10]
#> [1,] -0.006307800 -0.002018158 0.008100630 0.002350413 -0.007707794
#> [2,] -0.005751098 -0.003643292 0.019201436 0.012681672 0.011832309
#> [3,] -0.017366401 0.006180302 0.002858078 -0.003393401 0.002967266
#> [,11] [,12] [,13] [,14] [,15]
#> [1,] -0.016275942 -0.010116591 -0.01784367 0.004660247 -0.0004990214
#> [2,] 0.006408984 0.003850714 -0.01476810 -0.010933120 0.0215456694
#> [3,] 0.001669453 -0.011521808 0.02138358 -0.011119131 0.0079041599
#> [,16] [,17] [,18] [,19] [,20]
#> [1,] 0.005173063 -0.0007430059 -0.016204562 -0.006694691 0.003062961
#> [2,] -0.003062585 0.0150457482 -0.005860599 -0.015263245 -0.005846445
#> [3,] -0.008213032 0.0033581476 0.001010383 0.008542779 0.016462215
#> [,21] [,22] [,23] [,24] [,25]
#> [1,] -0.003116145 -2.757551e-03 -0.004446302 0.0005933797 0.00926511
#> [2,] -0.006049964 -9.437122e-05 0.014505029 0.0194931165 0.01442811
#> [3,] -0.020828183 -1.475961e-02 0.016491117 -0.0002074989 -0.01768180
#> [,26] [,27] [,28] [,29] [,30]
#> [1,] -0.013388304 0.004689481 0.005872094 0.007190472 0.005347300
#> [2,] -0.003739956 0.009004352 0.016240277 0.010494901 -0.007398217
#> [3,] -0.007209744 -0.015962603 0.017192160 0.012258145 -0.005115748
#> [,31] [,32] [,33] [,34] [,35]
#> [1,] 0.001680346 -0.015557479 0.004850973 -0.006549366 0.0119917048
#> [2,] -0.002978681 -0.003564303 -0.016898429 -0.003903867 -0.0167470183
#> [3,] -0.002143282 0.004772220 -0.007992287 0.007761385 -0.0008899787
#> [,36] [,37] [,38] [,39] [,40]
#> [1,] -0.007967197 -0.017080980 -0.015354178 0.011532571 0.002338068
#> [2,] 0.016100603 0.013897734 0.012196004 -0.011182482 0.010049418
#> [3,] 0.008703733 0.006037629 0.005946498 0.001705108 0.009287470
#> [,41] [,42] [,43] [,44] [,45]
#> [1,] 0.003619921 0.012816078 0.0041235091 -0.017452001 -0.021318896
#> [2,] 0.003594549 0.005200726 -0.0009146522 0.008511630 -0.003873733
#> [3,] -0.003124052 0.026958420 0.0042679397 0.001480645 0.003726960
#> [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.007285623 -0.002937737 0.006509775 0.006528708 0.004940669
#> [2,] 0.007897704 0.011566697 -0.004274386 0.003918609 0.012851522
#> [3,] -0.014537727 -0.010196348 -0.003355772 -0.006197163 0.002492892
#> [,51] [,52] [,53] [,54] [,55]
#> [1,] 0.026580770 -0.016055620 -0.001780814 -0.011833885 -0.009685781
#> [2,] 0.010019329 -0.006651025 0.002169854 0.011881919 0.001172852
#> [3,] 0.003530196 0.005956413 -0.002246625 0.004604253 -0.016650664
#> [,56] [,57] [,58] [,59] [,60]
#> [1,] 0.001703412 -0.006065237 -0.004808695 0.012989299 -0.002610542
#> [2,] 0.005949471 -0.014835492 0.013290200 0.010988166 -0.009727378
#> [3,] 0.005094825 0.017735418 0.005446883 -0.007888098 -0.012349384
#> [,61] [,62] [,63] [,64] [,65]
#> [1,] -0.005037586 0.005252110 0.001110508 -0.006130888 -0.007096768
#> [2,] -0.009227789 0.008939577 -0.005512513 0.002729460 -0.008162279
#> [3,] 0.009606334 0.007616883 -0.012705558 -0.007592521 -0.004714258
#> [,66] [,67] [,68] [,69] [,70]
#> [1,] 0.007873072 0.0001214382 0.006036887 0.002059482 -0.005786867
#> [2,] -0.008778095 0.0092165594 0.014692212 0.004902009 -0.009381668
#> [3,] -0.009283837 -0.0051378762 -0.007882756 -0.001608686 0.010550668
#> [,71] [,72] [,73] [,74] [,75]
#> [1,] 0.008407538 0.012616940 -0.002110728 -0.013172964 -0.018944721
#> [2,] 0.013135427 -0.007421876 -0.001602807 -0.007382738 -0.004354343
#> [3,] 0.007334300 0.013384093 0.003964295 0.009235466 0.004797217
#> [,76] [,77] [,78] [,79] [,80]
#> [1,] -0.012184337 -0.018591822 0.008835975 -0.002413198 0.014039783
#> [2,] -0.003690786 -0.003006536 0.007622825 0.010643070 0.019003567
#> [3,] 0.013082040 0.002489201 0.001269533 -0.001745509 -0.004721778
#> [,81] [,82] [,83] [,84] [,85]
#> [1,] -4.594234e-03 0.001048896 0.006069099 0.011596623 0.018572074
#> [2,] -3.457165e-05 -0.007201395 0.006166948 0.009990046 -0.001161742
#> [3,] -2.628949e-02 -0.001280286 -0.006370288 0.007998553 0.005623501
#> [,86] [,87] [,88] [,89] [,90]
#> [1,] 0.006541349 -0.0002899706 -0.005502633 -0.005874961 -0.007747788
#> [2,] -0.003306369 0.0048719811 0.015351312 -0.010558351 -0.002842088
#> [3,] 0.005322619 -0.0036330664 -0.011171726 -0.008901852 -0.007980138
#> [,91] [,92] [,93] [,94] [,95]
#> [1,] -0.0020929983 0.007573401 -0.009508486 0.006842019 -0.015543417
#> [2,] 0.0085544566 -0.002514830 -0.009671339 0.005666502 0.015785421
#> [3,] -0.0005568736 -0.022899619 -0.020798410 0.031483696 0.009932466
#> [,96] [,97] [,98] [,99] [,100]
#> [1,] 0.005233490 -0.004549276 -0.009723044 -0.01110131 0.013877281
#> [2,] -0.008854159 -0.019660091 -0.007802829 0.01312024 0.007845001
#> [3,] -0.005767871 0.006528192 0.012551583 0.01274071 -0.001563459
#>
#> $rho
#> [1] 0.5 0.5 0.5
#>
#> $omega
#> [1] 0.1 0.1 0.1
#>
#> $sigma2v
#> [1] 0.01 0.01 0.01
#>
#> $S
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [,99] [,100]
#> [1,] 1 1
#> [2,] 1 1
#> [3,] 1 1
#>
#> $sigma2_omega
#> [1] 1 1 1
#>
#> $s_
#> [1] 0.05 0.05 0.05
#>
## ------------------------------------------------
## Method `specify_starting_values_bsvar_sv$set_starting_values`
## ------------------------------------------------
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object