Provides posterior summary of forecast error variance decompositions
Source:R/summary.R
summary.PosteriorFEVD.Rd
Provides posterior means of the forecast error variance decompositions of each variable at all horizons.
Usage
# S3 method for class 'PosteriorFEVD'
summary(object, ...)
Arguments
- object
an object of class PosteriorFEVD obtained using the
compute_variance_decompositions()
function containing draws from the posterior distribution of the forecast error variance decompositions.- ...
additional arguments affecting the summary produced.
Value
A list reporting the posterior mean of the forecast error variance decompositions of each variable at all horizons.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute forecast error variance decompositions
fevd = compute_variance_decompositions(posterior, horizon = 4)
fevd_summary = summary(fevd)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Posterior means of forecast error |
#> variance decompositions |
#> **************************************************|
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar$new() |>
estimate(S = 10) |>
estimate(S = 20) |>
compute_variance_decompositions(horizon = 4) |>
summary() -> fevd_summary
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR model |
#> **************************************************|
#> Progress of the MCMC simulation for 20 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Posterior means of forecast error |
#> variance decompositions |
#> **************************************************|