Provides posterior means of the historical decompositions variable by variable.
Usage
# S3 method for class 'PosteriorHD'
summary(object, ...)Arguments
- object
- an object of class PosteriorHD obtained using the - compute_historical_decompositions()function containing posterior draws of historical decompositions.
- ...
- additional arguments affecting the summary produced. 
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification  = specify_bsvar$new(diff(us_fiscal_lsuw))
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in        = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior      = estimate(burn_in, 20)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
# compute historical decompositions
hds            = compute_historical_decompositions(posterior)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|
hds_summary    = summary(hds)
#>  **************************************************|
#>  bsvars: Bayesian Structural Vector Autoregressions|
#>  **************************************************|
#>    Posterior means of historical decompositions    |
#>  **************************************************|
# workflow with the pipe |>
############################################################
set.seed(123)
diff(us_fiscal_lsuw) |>
  specify_bsvar$new() |>
  estimate(S = 10) |> 
  estimate(S = 20) |> 
  compute_historical_decompositions() |>
  summary() -> hds_summary
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 10 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Gibbs sampler for the SVAR model                 |
#> **************************************************|
#>  Progress of the MCMC simulation for 20 draws
#>     Every draw is saved via MCMC thinning
#>  Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#>  Computing historical decomposition               |
#> **************************************************|
#>  This might take a little while :)                
#> **************************************************|
#>  **************************************************|
#>  bsvars: Bayesian Structural Vector Autoregressions|
#>  **************************************************|
#>    Posterior means of historical decompositions    |
#>  **************************************************|
