Provides posterior summary of structural shocks' conditional standard deviations
Source:R/summary.R
summary.PosteriorSigma.Rd
Provides posterior summary of structural shocks' conditional standard deviations including their mean, standard deviations, as well as 5 and 95 percentiles.
Usage
# S3 method for class 'PosteriorSigma'
summary(object, ...)
Arguments
- object
an object of class PosteriorSigma obtained using the
compute_conditional_sd()
function containing posterior draws of conditional standard deviations of structural shocks.- ...
additional arguments affecting the summary produced.
Value
A list reporting the posterior mean, standard deviations, as well as 5 and 95 percentiles of the structural shocks' conditional standard deviations for each of the shocks and periods.
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar_sv$new(us_fiscal_lsuw)
#> The identification is set to the default option of lower-triangular structural matrix.
# run the burn-in
burn_in = estimate(specification, 5)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-SV model |
#> Non-centred SV model is estimated |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# estimate the model
posterior = estimate(burn_in, 5)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-SV model |
#> Non-centred SV model is estimated |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# compute structural shocks' conditional standard deviations
sigma = compute_conditional_sd(posterior)
sigma_summary = summary(sigma)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Posterior summary of structural shocks' |
#> conditional standard deviations |
#> **************************************************|
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_sv$new() |>
estimate(S = 5) |>
estimate(S = 5) |>
compute_conditional_sd() |>
summary() -> sigma_summary
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-SV model |
#> Non-centred SV model is estimated |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-SV model |
#> Non-centred SV model is estimated |
#> **************************************************|
#> Progress of the MCMC simulation for 5 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Posterior summary of structural shocks' |
#> conditional standard deviations |
#> **************************************************|