Provides summary of the Savage-Dickey density ratios for verification of structural shocks homoskedasticity. The outcomes can be used to make probabilistic statements about identification through heteroskedasticity closely following ideas by Lütkepohl& Woźniak (2020).
Usage
# S3 method for class 'SDDRidMSH'
summary(object, ...)
Arguments
- object
an object of class
SDDRidMSH
obtained using theverify_identification.PosteriorBSVARMSH
function.- ...
additional arguments affecting the summary produced.
Value
A table reporting the logarithm of Bayes factors of homoskedastic to
heteroskedastic posterior odds "log(SDDR)"
for each structural shock,
their numerical standard errors "NSE"
, and the implied posterior
probability of the homoskedasticity and heteroskedasticity hypothesis,
"Pr[homoskedasticity|data]"
and "Pr[heteroskedasticity|data]"
respectively.
References
Lütkepohl, H., and Woźniak, T., (2020) Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity. Journal of Economic Dynamics and Control 113, 103862, doi:10.1016/j.jedc.2020.103862 .
Author
Tomasz Woźniak wozniak.tom@pm.me
Examples
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_msh$new(us_fiscal_lsuw, M = 2)
#> The identification is set to the default option of lower-triangular structural matrix.
set.seed(123)
# estimate the model
posterior = estimate(specification, 10)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
# verify heteroskedasticity
sddr = verify_identification(posterior)
summary(sddr)
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Summary of identification verification |
#> H0: s^2_nm = 1 for all m [homoskedasticity] |
#> H1: s^2_nm != 1 for some m [heteroskedasticity] |
#> **************************************************|
#> log(SDDR) NSE Pr[H0|data] Pr[H1|data]
#> shock 1 2.2577420 0 0.9053163 0.09468375
#> shock 2 -0.6010526 0 0.3541029 0.64589708
#> shock 3 -1.0626004 0 0.2568128 0.74318717
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_msh$new(M = 2) |>
estimate(S = 10) |>
verify_identification() |>
summary() -> sddr_summary
#> The identification is set to the default option of lower-triangular structural matrix.
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Gibbs sampler for the SVAR-stationaryMSH model |
#> **************************************************|
#> Progress of the MCMC simulation for 10 draws
#> Every draw is saved via MCMC thinning
#> Press Esc to interrupt the computations
#> **************************************************|
#> **************************************************|
#> bsvars: Bayesian Structural Vector Autoregressions|
#> **************************************************|
#> Summary of identification verification |
#> H0: s^2_nm = 1 for all m [homoskedasticity] |
#> H1: s^2_nm != 1 for some m [heteroskedasticity] |
#> **************************************************|